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Introduction

This document contains my notes from Physics: Waves and Fields.
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1 Chapter 15: Oscillatory Motion

1.1 Simple Harmonic Motion

While an object is oscillating, it’s acceleration is no longer constant. We can
however still understand its motion. Assuming the only force affecting the
motion of an object is a spring, we can state that:∑

~F = ~Fspring∑
~F = −k~x

...following this we can say:
−k~x = m~a

−k~x
m

= ~a
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...remember that ~a is just the second derivative of position with respect to time:

−k~x
m

=
d2~x

dt2

...finally remember x is a function of time:

−k x(t)

m
=
d2x(t)

dt2

This equation is true for any object undergoing oscillatory motion, with only the
spring force affecting it’s motion. This is an example of a differential equation,
as in an equation that contains both the function x(t) and it’s derivative (in this
case second derivative). The goal is to find a function x(t) that satisfies this
equation. Differential equations are notably difficult to solve, and so a solution
is given as the following:

x(t) = Acos(ωt+ φ)

Where:

• A represents the amplitude of the oscillation.

• ω represents the angular frequency and is defined as:

ω ≡
√
k

m

• φ represents the phase constant, and can be found by:

φ = cos−1

(
x(0)

A

)

Some other equations that are a result of this relationship are as follows:

T =
2π

ω
= 2π

√
m

k

f =
1

T
=

1

2π

√
k

m

φ

2π
=

∆t

T

Where T represents period and f represents frequency.
Given by the fact that we have a function for the position of the oscillating

mass, we can also find the functions for velocity, and acceleration as follows:

x(t) = Acos(ωt+ φ)
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v(t) = −Aωsin(ωt+ φ)

a(t) = −Aω2cos(ωt+ φ)

An interesting result of this is that we can find the values for the maximum
velocity and acceleration because of the fact that they are sinusoidal functions
and their max’s are the absolute value of the leading coefficient. This means:

vmax = Aω = A

√
k

m

amax = Aω2 = A
k

m

1.2 Energy in Simple Harmonic Motion

Through the course of the oscillation, total mechanical energy is converted from
potential energy to kinetic energy, where potential energy is greatest at the end
points, and kinetic energy is greatest in the middle. Consider the equation for
the potential energy of a spring:

PE =
1

2
kx2

The total energy is conserved, and so we can calculate the total energy at the
end points (where there is no kinetic energy), as in:

Etotal =
1

2
kA2

Now that we know this, we can derive a formula for v(x), using the fact that:

∆K + ∆U = Etotal

1

2
kx2 +

1

2
mv2 =

1

2
kA2

kx2 +mv2 = kA2

mv2 = kA2 − kx2

mv2 = k(A2 − x2)

v2 =
k

m
(A2 − x2)

v(x) =

√
k

m
(A2 − x2)
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1.3 Pendulums

Let’s now investigate a specific form of a simple harmonic oscillator, a swinging
pendulum. Consider, a point mass string up to the ceiling, as it swings it makes
and angle θ with it’s center vertical line. The length of the string is l. The point
mass has two forces acting on it: gravity and the force of tension in the string.
The force of gravity is the only force that causes torque, as in:∑

~τ = I~α

−mglsin(θ) = ml2~α

−gsin(θ) = l
d2θ

dt2

−g
l
sin(θ) =

d2θ

dt2

Which for small angles is equivalent to:

−g
l
θ =

d2θ

dt2

Which is a differential equation we know how to solve:

θ(t) = θmaxcos(ωt+ φ)

Where: ω =

√
g

l

In the case where the pendulum is not a point mass, the only difference is that

I 6= ml2

and so:

ω =

√
mgd

I

1.4 Damped Harmonic Motion

In a realistic situation, the oscillatory motion will eventually stop. This is due
to the friction within the spring, and interactions with the air molecules. This
reduces the mechanical energy of the system. When the system is not ideal, the
amplitude becomes a function of time, and the new solution to our differential
equation must take that into account, as in:

x(t) = A(t) cos(ωt+ φ)

... and in this case, A(t) can be written as:

A(t) = Aie
−bt/2m

Where:
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1. Ai is the natural amplitude of the oscillator without dampening, as in the
initial amplitude.

2. b is the dampening parameter that encompasses the friction applied to the
system.

3. ω is not the same ω as before, in this case it described as:

ω =

√
ω2
o −

(
b

2m

)2

...and here, ωo is the same omega as before, as in the natural frequency of
the oscillation without dampening.

1.5 Forced Oscillations

Just as friction does negative work on the system, it is possible to have a force
acting on the system that does positive work. For instance, pushing someone
on a swing, if you time your pushes properly then you can keep the person
swinging. This is an important feature of forces acting on oscillations, that is
that the force itself is periodic, and can be described as:

F (t) = Fosin(ωt)

where Fo is the driving force and ω is the angular frequency of the force.
In this situation, the position of an object can be written once again as:

x(t) = A(ω) cos(ωt+ φ)

... and in this case, A(ω) can be written as:

A(ω) =
Fo/m√

(ω2 − ω2
o)2 + ( bωm )2

Where:

1. A(ω) is the amplitude when the driving force is applied.

2. Fo is the value of the driving force.

3. ωo is the natural angular frequency as in: ωo =
√

k
m

4. ω is the frequency of the driving force.
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2 Chapter 16: Wave Motion

2.1 Wave Properties

For this class, a wave required three things:

1. Some source of disturbance.

2. A medium containing elements that can be disturbed.

3. Some physical mechanism through which elements of the medium can
influence each other.

There are then two distinct types of waves:

1. Transverse: the elements of the medium that are in motion due to the
wave are moving perpendicular to the direction of propagation.

2. Longitudinal: the elements of the medium that are in motion due to the
wave are moving parallel to the direction of propagation.

In order to mathematically de-
scribe a wave, we must define a multi-
variable function y(x, t) which returns
the y-value of a point of the dis-
turbed medium at a specific point
down the medium (an x-value, like a
point down the rope) and at a specific
time.

For a fixed x0 → y(x0, t) is
a graph the motion of one particle
through time. While for a fixed t0 →
y(x, t0) is like a snapshot of the entire
wave at a fixed time.

In general, for a wave which has
the shape f(x), the function describ-
ing the motion of the wave is

y(x, t) = f(x− vt)
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Wavelength (λ) is the distance in meters between the crests of the wave.
Period (T) is the time after which a full cycle completes. In particular, we are
typically interested in studying sinusoidal waves in the form:

y(x, t) = Asin(kx− ωt+ φ)

Where:

•
k =

2π

λ

•
ω =

2π

T
= 2πf

•
v =

λ

T
= λf

The speed v of a wave is a constant depending on the medium it moves through.

2.2 Waves Through a Rope

For a wave through a rope, the speed of the wave v is determined by the following
equation:

v =

√
T

µ

Where:

• T is the tension in the rope.

• µ is the mass per length of rope (like rope density).

The energy carried by a wave in this form is described by the following
equation:

E =
1

2
µω2A2λ

And the power which is the energy per period of motion is described by:

P =
1

2
µω2A2v
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2.3 Wave Reflection

For a wave travelling through a medium and hitting a boundary, some of the
wave will be reflected back, and some will be transmitted through the boundary.
Depending on the relative speeds of the wave on each side of the boundary, the
reflected pulse may be inverted. In particular, if the speed of the wave is slower
on the other side of the boundary, the reflected wave back into the original side
of the boundary will be inverted (reflected across the x-axis).

2.4 Sound Waves

Sound waves are longitudinal waves which result from the compression or rar-
efaction (opposite of compression) of a medium.

In the context of sound waves, the mathematical qualities of the wave have
physical effects. The frequency (f) is the perceived pitch or tone of the sound.
For example the standard note A on a piano vibrates at a frequency of 440Hz
(or 443Hz if you want to have an argument). Following this the amplitude (A)
is the perceived volume of the sound.

For a longitudinal wave going through a medium, you can describe the po-
sition of any one element of the medium relative to its equilibrium position (a
quantity called s) using the following function:

s(x, t) = smaxcos(kx− ωt+ φ)

The wave can also be described by pressure differences of the particles in the
medium compared to the equilibrium pressure in the following equation:

∆P (x, t) = ∆Pmaxsin(kx− ωt+ φ)

Notice s(x, t) and ∆P (x, t) are out of phase by π
2 .

2.5 Bulk Modulus

The bulk modulus (B) is a measure of how in-compressible a fluid is, a low B
value means the fluid is easily compressible. The bulk modulus can be described
by the equation:

∆P = −B∆V

Vi

Or equivalently:

∆V = −∆P Vi
B

From the first equation it can be concluded that:

∆Pmax = Bsmaxk = smaxρvω
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Recall that on a string, the speed of the wave can be described by: v =
√
T/µ,

and now for a longitudinal wave that is more generally:

v =

√
elastic property

inertial property
=

√
B

ρ

The speed of sound through air can be approximately calculated as a function
of the temperature using the following formula:

v = 331m/s

√
1 +

T

273◦C

2.6 Sound Intensity and Loudness

Most waves travel in more than 1 dimension and so they spread uniformly from a
point. The wave fronts are the maximums of the wave, expanding from a point
and are always spaced one wavelength apart.

For a sound wave the energy con-
tained in the wave can be described
by the following equation, which is
similar to that of the energy in a
string:

E =
1

2
ρω2s2maxλ× (Area)

Where the area in the formula is the
area of the surface causing the longi-
tudinal wave motion (like the vibrat-
ing surface of a speaker). The power
is:

P =
1

2
ρω2s2maxv × (Area)

Energy is always conserved, if you
had a detector in the shape of a sphere
around the source, then it would pick up 100% of the energy. The fraction of
energy you detect is the fraction of the area of a sphere your detector picks up.
As in:

(power)detected = (power)emitted ×
(Detector Area)

4πr2

If you want to consider the intensity of the sound wave felt at different distances
from the source, the following equations help:

I =
Power

Area
=

1

2
ρω2vs2max
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I =
Power

4πr2

The sound level of a sound wave is measured in decibels (which is a dimensionless
quantity), and can be calculated by:

β = 10 log10(
I

I0
)

Where:

• β is the sound level in decibels.

• I is the intensity of sound at the observer.

• I0 is the threshold of hearing which is a constant equal to 10−12 W/m2

Decibels (β) are not additive, but the intensities are.

2.7 The Doppler Effect

For this entire section we assume that the medium is at rest. The frequency
measured by an observer may differ from the emitted frequency if the source or
observer are moving. This is an effect that applies to all waves. What happens is
the motion changes the frequency at which the observer crosses the wave fronts.
Here are the two possibilities for a moving observer and motionless source:

1. If moving toward the source, they measure a higher frequency.

2. If moving away from the source, they measure a lower frequency.

Here are the two possibilities for a moving source and motionless observer:

1. If moving towards the observer, the higher the frequency observed.

2. If moving away from the observer, the lower the frequency observed.

A useful equation relating to the Doppler effect is the following:

t =
L

vo + v

Where:
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• t is the time it takes for the first wave front to encounter the observer.

• L is the initial distance between the observer and the source.

• vo is the velocity of the observer.

• v is the speed of the wave in the medium.

The main equation relating to the Doppler effect finds the frequency observed
by the observer (fo) relating it to the frequency emitted by the source (fs):

fo = fs

(
v + vo
v − vs

)
One thing to note is the sign on the variables vo and vs. The sign always reflects
whether the person is moving towards or away from the other. v always has a
positive sign.

3 Chapter 17: Superposition and Standing Waves

3.1 Interference

The superposition principle states that when two waves collide they add
together point by point, and pass through each other unaffected.

In this course, we consider the collision of two waves with the same ampli-
tudes and different frequencies and phase.

First consider two waves each with the same amplitude, frequency and phase
shift, essentially the same wave. If both these waves were to propagate through
a medium at the same time, the effect would be the same as having a single
wave with twice the amplitude. This is because at every point the the amplitude
of the resulting wave is equal to the sum of the two heights of the individual
waves. As visible in the following image, the blue curve represents both of the
individual waves overlapped over each other, and the red wave represents the
resulting wave:

This is an example of constructive interference which occurs throughout the
wave where the waves are both adding onto the total amplitude.

The following is an example of destructive interference. The blue and green
waves are identical except out of phase by half a period, and the red line is the
resulting curve:
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Typically however, waves are neither perfectly in phase nor perfectly out of
phase by half a period. In this case, the resulting amplitude is somewhere in
between 0 and twice the amplitude of the two waves. An example of this is in
the following image:

You can determine the phase difference (∆φ) between two waves emitting from
a source depending on the distance the wave travels from each source to the
observer:

∆φ = 2π

(
|r2 − r1|

λ

)
The result of adding the two sinusoidal waves:

y(x, t) = Asin(kx− ωt+ φ) and y(x, t) = Asin(kx− ωt)

... which have the same amplitude and frequency is (using trigonometric iden-
tities):

y(x, t) = 2Acos

(
φ

2

)
sin

(
kx− ωt+

φ

2

)
Assuming two waves leave their individual sources in phase, and travel different
distances (r1 and r2) to an observer, then:

• Constructive interference occurs if:

|r2 − r1| = nλ, for n ∈ Z+

• Destructive interference occurs if:

|r2 − r1| = (n+
1

2
)λ, for n ∈ Z+

3.2 Beat Frequency

Now consider two waves that have the same amplitude but different frequen-
cies. When these waves are added together, we get a mixture of zones with
constructive interference, and zones with destructive interference. As visible in
the following image.
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The sum of these waves has a unique shape, essentially it is a high frequency
sinusoidal wave that is being enveloped by a relatively slower sinusoidal wave,
as visible in the following image:

Those dips in the wave, as in moments of complete destructive interference,
are called beats. Similar to how with damped oscillations in chapter 15, the
amplitude became a function of time, the amplitude is now also a function of
time. We can describe a wave like this by:

y(t) = A cos(ω1t) +A cos(ω2t)

y(t) = 2A cos

(
ω2 − ω1

2
t

)
sin

(
ω1 + ω2

2
t

)
Notice:

A(t) = 2Acos

(
ω2 − ω1

2
t

)
Also notice that since ω is a positive value, the frequency of the sin function is
greater than that of the cos function. From that A(t) function, we can derive a
formula for the beat frequency of the sinusoidal function, as in the frequency
of the points of constructive/destructive interference, as below:

fbeat = |f2 − f1|

... which is that the absolute difference between the frequencies of the original
two sinusoidal waves is the beat frequency. Notice also by looking at the graph
that the beat frequency is twice the envelope frequency.

3.3 Standing Waves

A standing wave is a wave created by the sum of two waves. Those two waves
have the same amplitude and frequency, but are travelling in opposite direc-
tions. Standing waves have no horizontal motion as time moves forward. A
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unique feature of standing waves is that certain points called nodes experience
no movement at all, while other points called antinodes experience the most
movement to the full amplitude of 2A.

A standing wave which is the sum of two sinusoidal waves with equal am-
plitudes and frequencies moving in opposite directions can be modeled by the
following equation:

y(x, t) = [2Asin(kx)]cos(ωt)

Here, [2Asin(kx)] acts as the amplitude as a function of position, which is
notably constant with time. Therefore each individual particle in the wave is
undergoing simple harmonic motion with the same frequency and amplitude
determined by that expression.
Finding Nodes/Antinodes
Nodes occur where the value of [2Asin(kx)] is zero, as in:

kx = nπ, for n ∈ Z

... or equivalently, to find the position of the nth node (xn):

xn =
nλ

2
, for n ∈ Z

Antinodes occurs where the value of [2Asin(kx)] is 2A (the maximum ampli-
tude), as in:

kx =
mπ

2
, where m is an odd integer

... or equivalently, to find the position of the mth antinode (xm):

xm =
mλ

4
, where m is an odd integer

The distance between antinodes is half a wavelength (λ), the distance between
nodes is half a wavelength, and the distance between a node and the nearest
antinode is one quarter of a wavelength.

3.4 Standing Waves on a String

Recall that if a wave is sent down a string and it hits a fixed end, it will be
reflected back. If both ends of a string are fixed in place, and a wave is passed
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through the string, the ends must be nodes. Since nodes are always half a
wavelength apart, standing waves are only created if the distance between each
end point is a multiple of λ

2 , as in:

L =
nλ

2
, for n ∈ Z

... or equivalently:

λn =
2L

n
, for n ∈ Z

Here n denotes how many multiples of half a wavelength are between the two end
points. This is called the harmonic of the standing wave and the nth harmonic
has n antinodes. The first harmonic is called the fundamental frequency or just
the fundamental.

The oscillating frequency that achieves this nth harmonic can be found by:

fn =
nv

2L
, for n ∈ Z

The fundamental frequency is the note heard by playing string instruments, this
note can be changed by changing the length of the string (putting your finger
somewhere along the string) or by changing the tension in the string (tuning
the instrument) which changes the speed of the wave.

3.5 Standing Waves in Air Columns

In a pipe, a sound wave can travel through and either be reflected back by a
closed end or just exit the pipe by an open end. As a sound wave travels down
a pipe, a closed end must be a node since the molecules cannot oscillate at the
end. Likewise, an open end must be an antinode.

Consider a pipe with both ends open, since both ends are antinodes,
and since antinodes are always half a wavelength apart, then to achieve a stand-
ing wave the length of the pipe must be a multiple of λ2 . This is identical to the
standing wave on a string except with antinodes instead of nodes. Mathemati-
cally that means that:

L =
nλ

2
, for n ∈ Z

fn =
nv

2L
, for n ∈ Z

Now consider when a pipe is open only on one end. Since the open
end must be an antinode and the closed end must be a node, and since nodes
and antinodes are always 1

4 of a wavelength apart, then to achieve a standing

wave, the length of the pipe must be an odd multiple of λ
4 , as in:

L =
mλ

4
, where m is an odd integer
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fm =
mv

4L
, where m is an odd integer

Notice, there are no even harmonics for a pipe with once end closed.

4 Chapter 13: Universal Gravitation

4.1 Newtonian Gravity

Gravity is a vector field. A field is a function that attributed a value to every
point in space. For example, temperature is an example of a scalar field, in
which every point in the room has a temperature. A vector field is a function
which assigns a vector to every point in space.

The gravitational field is the field which assigns a vector to each point in
space around a mass. The gravitational field from a single point mass always
points towards the center of the mass. Mass creates a gravitational field. Masses
react to each other’s gravitational fields.
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The magnitude of any vector in the gravitational field is defined by:

|~g| = GM

r2

Where:

• G is a constant defined by

G ≡ 6.67× 10−11 m3

kg sec2

• M is the mass of the object creating the field.

• r is how far away the point is from the center of the massive object.

Near the earth’s surface, the gravitational field essentially points straight down,
and we can use the formula above to show that near the surface:

|~g| = 9.81
m

sec2

If a mass is affected by multiple gravitational fields, then you just take the vector
sum of each gravitational field to find the resultant vector.

A mass m sitting in a field ~g feels a force:

~F = m~gext

All particles in the universe exert gravitational forces on each other, and the
magnitude of the force between two masses m1 and m2 is described by Newton’s
Law of Universal Gravitation: ∣∣∣~FG∣∣∣ =

Gm1m2

r2

This force is always attractive and points in a line connecting the centers of
mass of the two objects.
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4.2 Orbits and Gravitational Potential Energy

Using Newton’s second law, and laws of circular orbits, we can see derive a
formula for the velocity v of a mass Mp as it orbits at a radius r around a mass
Ms, as in: ∑

~F = m~a

GMsMp

r2
= Mp

v2

r

... finally:

v2 =
GMs

r

Orbit is essentially a free fall in which the Earth continuously recedes from
under the mass falling.

Geostationary orbit is the orbit which has the same period as the rotation of
the Earth, for this reason a mass orbiting the sky in geostationary orbit would
remain in the same place in the sky. The distance above the Earth’s surface for
geostationary orbit is around 36, 000km.

If you were to imagine pulling a mass from an initial radius to a final one,
what would be the work done by gravity? As in the following image:
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Using the fact that:

Wgravity =

∫ rf

ri

~F · d~r

... and:
∆Ug = −Wgravity

∆Ug =
Gm1m2

ri
− Gm1m2

rf

Which tells us that:

Ug = −Gm1m2

r

Where Ug is the potential energy of a pair of masses, and r is the center to
center distance between the objects. The zero of potential energy is typically
set at r = ∞, and so separating objects takes positive work. The potential
energy is stored between the pair of the objects, not just one of the objects.

The total energy in a circular orbit is defined as:

E =
−GMm

2r

Where:

• M is the mass of the large object.

• m is the mass of the small object orbiting.

The total energy in an elliptical orbit is given by:

E = −GMm

2a

Where a is the semi-major axis of the ellipse (the long axis).

4.3 Escape Speed

Escape speed is the speed a projectile needs to be launched at in order to
escape the gravitational field and go off forever. The final radius of an object
that has been launched is given by:

rf =
GM

GM
ri
− 1

2v
2
i

Notice that if:
1

2
v2i ≥

GM

ri
... then the object never stops. You can solve for vi to find the launch speed
required for the object to escape the gravitational field, as in:

vesc =

√
2GM

R
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5 Chapter 22: Electric Fields

5.1 Elementary Concepts

Electric fields behave very similarly to gravitational fields. Just like how a GF
is created by a mass in space, an electric field is created by a charge in space.
The main difference between mass m and charge q or Q is that charge can take
on a positive or negative value. This is the main important distinction between
gravitational fields and electric fields, there are two types of charges, positive
and negative. The electric force caused by the electric field is the force that
acts between electrically charged objects.

Another important fact about electric charges is that the net electric charge
of the universe is conserved. This means that if I have an object with a charge
of +2, the somewhere in the universe there must be an object with charge −2.

The following are the elementary concepts regarding electric forces:

• Like charges repel, opposites attract.

• Electric forces get weaker as the distance between charges increases.

• Only negative charges move, positive charges stay in place.

• Neutral objects have an equal number of positive charges and negative
charges.

• A positively charged object has a net positive charge.

• A negatively charged object has a net negative charge.

• An insulator is a material which resists the flow of charges.

• An conductor is a material which promotes the flow of charges.

– Note: Insulators can be polarized by moving all the positive charges
to once end and thus the negative charges to the other. This does
not allow charges to move out of the insulator. This is called charging
by induction.

5.2 Charging by Induction

A neutral object can be charged by induction by bringing a negative object
close to it with a ground wire on the other side. The negative charges inside the
neutral object will be repelled into the ground wire giving the object an overall
positive charge. The following image sums up this concept:
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The SI Unit or charge is the coulomb (C), which is a huge charge. Every
physical unit of charge is actually a multiple of the fundamental unit of charge
(e) which is defined as:

e = 1.602× 10−19C

The charge of a proton (qp) and the charge of an electron (qe) are:

qp = +e

qe = −e
An electric field is the distortion of space due to an electric charge. The electric
field ~E always points away from a positive charge and towards a negative charge.
The force felt by a charge in an electric field is:

~Fe = q ~E

... where: ∣∣∣ ~E∣∣∣ =
ke|q|
r2

For an electric field created by a point charge. ke is the proportionality constant

with a value of 9.0× 109N ·m2

C2 .
In the presence of multiple point charges, the net field is found by adding

the fields from each point charge separately, as vectors.
Coulomb’s Law states that the magnitude of force exerted on one point

charge onto another point charge at a distance is:∣∣∣ ~F1on2

∣∣∣ =
∣∣∣ ~F2on1

∣∣∣ =
∣∣∣~F ∣∣∣ =

ke|q1q2|
r2

5.3 Electric Field Lines

Another way to visualize an electric field around a charge is drawing Electric
Field Lines. These are lines that come from the charge, and for every point
on the line, the electric field is tangent to it. In general, the density of lines
represent the strength of the field. These field lines can be curved, however they
cannot cross and only end at a charge or at infinity. For a simple single point
charge, the following is the field line representation of it’s electric field:
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... and the following is the field line representation for a system of two charges:

You can see that the field lines curve, this does not mean that the electric field
curves. The electric field is a vector and it always tangent to the field line.
Another important note is that these field lines are surrounding the object in
3D, and that the electric field still exists between field lines. The direction of
the line is that of the field on a positive charge placed in the field.

5.4 Uniform Electric Field

A uniform electric field is created by two charged plates that produce an electric
field that essentially goes directly between the plates, and always perpendicular
to them. The following image shows this:
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Notice that a single particle travelling through a uniform electric field is expe-
riencing constant acceleration. Which means that the kinematics of constant
acceleration can be used to describe the motion of the particle.

|~a| =
|q|
∣∣∣ ~E∣∣∣
m

6 Chapter 23: Electric Flux and Gauss’s Law

6.1 Electric Flux

Electric flux is another measure of charges that related to the field lines moving
through a surface. Given some finite flat area A, the electric flux ΦE through
that flat surface is defined by:

ΦE = ~E · ~A

Where:

• ~E is the electric field passing through the surface.

• ~A is the vector which is normal to the plane which defines the finite flat
area.
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A closed surface is a surface with volume, as in it encloses some space.
Flux is defined to be positive if it is exiting the surface, and negative if it is
entering the surface. In general, to find the flux through a surface, you divide
up the surface into little pieces, compute the flux through each piece, and then
integrate them back together. Doing this over a surface is called a surface
integral and is written as the following:

ΦE =

∮
~E · d ~A

... which is the definition for electric flux through a closed surface, visualized
by the following:

The net flux through a surface is an interesting thing to think about, in
the following two examples the net flux is zero:
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... this is because the amount of field lines entering equals the number of field
lines leaving, and so the net flux is zero. However in the following example, the
next flux is not zero:

... since field lines are only leaving the box. Notably in order to have a net flux
not equal to zero, you need to have a net charge within the volume enclosed by
the surface. The net flux does not depend on the shape of the surface, all of the
following surfaces have the same field lines going through them:

6.2 Gauss’ Law

The net flux through a closed surface is non-zero if there is a net charge inside
the surface. Gauss’ Law states that:

ΦnetE = 4πkeQin
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This means that: ∮
~E · d ~A = 4πeQin

... where Qin is the net charge on the inside of the surface. This gives us a way
to calculate the electric flux through a surface without having to compute the
surface integral. This is also commonly written as:∮

~E · d ~A =
Qin
ε0

= ΦnetE

... where ε0 is called the permitivity of free space defined as:

ε0 =
1

4πke
= 8.85× 10−12 C2

N ·m2

Gauss’s Law is true for any closed surface. A Gaussian Surface is a fictitious
surface made up to solve a problem.

Gauss’s Law confirms some facts that we already knew, like that from the
outside of a point charge, the electric field caused by that point charge is:∣∣∣ ~E∣∣∣ =

keQ

r2

... but Gauss’ Law also tells us that the electric field caused by a point charge,
within its own radius is as follows:∣∣∣ ~E∣∣∣ =

keQ

a3
r

Where:

• a is the radius of the entire point charge.

• r is the distance from the center of the point charge.

• Q is the total charge of the point charge.

Note: λ = Q/L is linear charge density, σ = Q/A is surface charge density, and
ρ = Q/V is volume charge density.

Gauss’ Law also can tell us about the electric field caused by an in finite
plate of charge. The electric field is constant regardless of the distance from
the charged plate, so long as that distance is much smaller than the size of the
plate. The electric field can be described by:∣∣∣ ~E∣∣∣ =

Q

2Aε0
=

σ

2ε0

Finally, Gauss’ Law is helpful in finding the electric field caused by a long
wire or charge, which can be described by:∣∣∣ ~E∣∣∣ =

2keλ

r
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7 Chapter 24: Electrical Potential

7.1 Electric Potential

For some position of a charge in an electric field, the charge-field system has a
potential energy. This potential energy depends on both the charge creating the
field, and the charge experiencing the field. Dividing this potential energy by
the charge experiencing the electric field gives us a new quantity called electric
potential (V) as follows:

V =
UE
q

=
J

C
= V olt

... which is the potential energy per charge. The potential difference between
two points in an electric field is defined as the change in electric potential energy
of the system when a charge q moves between the two points divided by the
charge:

∆V =
∆UE
q

=⇒ ∆UE = q∆V

The potential difference ∆V exists solely because of a source charge, while
difference in potential energy depends on both the source charge and the charge
experiencing the field. The potential difference is describing how much potential
energy a specific charge q would have at some point. Consider how height affects
potential energy in the equation ∆Ug = mg∆h. If I were to place some mass m
at some point with height h, you could tell me the difference in potential energy
it would have. Similarly, if I were to place some charge q at some point with
voltage ∆V , you could also tell me the difference in potential energy it would
have. In a uniform electric field, the potential difference can be described by:

∆V = Vf − Vi = − ~E ·∆~s

In a non uniform electric field, the general form of the potential difference is
given by:

∆V =

∫ state 2

state 1

~E · d~s

An electron volt is a unit of energy defined as:

eV ≡ (1.60218× 10−19C)(1V ) = 1.60218× 10−19J

For a point charge, the electric potential at any radius away from it’s center is
described by:

V (r) =
keQ

r

... by doing this we are setting V (∞) to be our zero of electric potential. This
creates radii of equal voltage, called equipotential surfaces that surround the
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point charge. A positive charge creates ”hills” (as in a point of high potential
that decreases with distance) while a negative charge creates ”valleys” (as in a
point of low potential that increases with distance). Comparing equipotential
lines to the lines of a topographic map is a common comparison. The electric
field ~E is like the slope of the hills.

Positive charges move or ”roll downhill” to lower potential, while negative
charges act in the opposite direction, they tend to ”roll uphill” to a higher
potential.

The Superposition Principle hold with potentials, so if you have n charges
around a point then:

Vp =

n∑
n=1

V (rn)

The potential energy for a pair of point charges is given by the following:

UE =
keq1q2
r

... which is very similar to the potential energy of a pair of masses.
In order to find the electric field ( ~E) from the potential difference, you need

to extract the three spacial components of the electric field (Ex, Ey, Ez) by:

Ex = −∂V
∂x

Ey = −∂V
∂y

Ez = −∂V
∂z

... or radially:

Er = −∂V
∂r
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7.2 Conductors

Conductors are materials that allow electrons to move freely inside them.
Electrostatics is the study of charge distributions that do not change with
time, this is what we have been doing. If an electric field acts on a conductor,
the electrons inside of it will rearrange themselves to produce a sheet of negative
charges, this sheet of negative charges produces its own electric field, which
cancels out the external electric field. This takes times, and while the electric
fields are not balanced, the resulting force is what moves the electrons to the
equilibrium position. For this reason, the electric field ( ~E) inside of a conductor
is always 0 at equilibrium.

There are 5 main properties of conductors in equilibrium:

1. The electric field is zero everywhere inside.

2. Any net charge on the conductor will reside on its surface.

3. Near the surface, ~E points perpendicular to the surface and has magnitude:∣∣∣ ~E∣∣∣ =
σ

ε0

4. The charge density is highest where the radius of curvature of the surface
is smaller.

5. The surface of a conductor is an equipotential.

8 Chapter 26: Current and Resistance

8.1 Electric Current, and Ohm’s Law

Electrons in a circuit do work but are not used up. Recall that potential differ-
ence is like a hill which can cause charges to move, caused by a force induced by
an electric field. Applying a potential difference to a material with free charges
(electrons) leads to a current which is the flow of charge, as in:

I =
dQ

dt

1A = 1C/s

Note: Current is defined as the flow of positive charges even thought in reality
it is the negative charges that are moving.

Say we have a wire like the following:
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... and we want to know the number of charges N that flow past the circular
area A in time ∆t. Suppose we know the concentration of charges n, and the
velocity of each charge vd. Charges that are further than vd∆t meters away will
not make it through the circle in ∆t time so we only need to find the number
of particles in that distance, which we can get by simply multiplying the charge
density with that volume, as in:

N = n(A(vd∆t)) = nAvd∆t

Now say we want to know the total value of charge that passes through the area
A in the same time, we just multiply the number of charges by the value of each
charge, as in:

∆Q = qN = qnAvd∆t

We can use this to define current as:

I =
∆Q

∆t
= nqAvd

The velocity of the particles is called the drift velocity because in reality, the
motion of the electrons are fast and random, changing directions and colliding,
but an electric field induces a small drift velocity to all the electrons in the
opposite direction than the field, and this is what’s used.

Ohm’s Law states that the voltage drop across a resistor, as in the potential
difference between each side of the resistor, is proportional to the current passing
through the resistor, as in:

∆VR = IR

... where R is the resistance measure in Ohms (Ω) and the higher the resistivity
(ρ) the more insulating the material is. Conductivity is positive, the higher the
conductivity the more flow of charge for a given electric field, denoted (δ). Note
that:

ρ =
1

δ
Conductivity and resistivity are properties of the material and temperature, and
do not depend on size or shape. The resistance of a resistor is defined in terms
of its resistivity:

R = ρ
`

A
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... where ` is the length of the resistor in the direction of the current, and A is
the cross-sectional area.

Power is the rate at which charges lose potential energy as they pass through
a resistor and is defined as:

P = I∆VR

... where I is the current through the resistor, and ∆VR is the voltage drop
across the resistor. Combining this with Ohm’s Law we can find more formulas
for power:

P = I∆VR = I2R =
∆V 2

R

R

9 Chapter 28: Magnetic Fields

9.1 Magnetic Force and Field

Magnetism is a third long range force that acts through a field. The charges of
a magnet are called poles, north and south. Like poles repel, opposites attract.
A unique detail about magnetic fields and charges is that free magnetic charges
don’t exist, a magnetic pole is always counteracted by another magnetic pole of
opposite polarity.

As with electric fields, there is a magnetic field vector at every point in space.
Since there are no free charges, all magnetic field lines are closed loops. Magnetic
fields ~B are defined in:

[ ~B] =
kg

C · s
≡ T (Tesla)

Currents produce magnetic fields.

In the specific case of current through a wire, the direction of the field is a
circle around the wire. To determine whether the field is moving clockwise of
counter-clockwise. You can use the first Right-Hand Rule which is:
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• Thumb of right hand points in direction of current.

• Curl of fingers in direction the magnetic field.

9.2 Magnetic Force Law

The magnetic force induced on a charge by a magnetic field is:

~FB = q(~v × ~B)

... which is a vector with magnitude:∣∣∣~FB∣∣∣ = |q||~v|
∣∣∣ ~B∣∣∣ sin(θ)

... and direction in the direction of the cross product if q > 0 or opposite if q < 0.
Recall the cross product is a vector perpendicular to the plane containing ~v and
~B. To determine direction, use the next right hand rule:

• Point your fingers on your right hand in the direction of the motion of the
particles.

• Curl your fingers into the magnetic field.

• The direction your thumb is pointing is the direction of the force for a
positive charge, opposite to the direction for a negative charge.

9.3 Motion in a Uniform Magnetic Field

Note that the following notation is used to denote the direction of the magnetic
field into and out of the page:
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Consider a particle moving through a uniform magnetic field, as in the following
image:

Since the velocity is in the positive y direction, and the magnetic field is
going into the page, by the right hand rule the force will always point to the
right. This causes a particle in a uniform magnetic field to move in a circular
path, the radius of which is called the cyclotron radius, and can be calculated
by:

r =
m|~v|

|q|
∣∣∣ ~B∣∣∣

An important thing to consider is that magnetic forces never point in the di-
rection of velocity, always perpendicular to it, and so they cannot speed up or
slow down particles. Magnetic fields do no work on charges particles. If the
magnetic field is not perfectly perpendicular to the velocity of the particle, you
just take the perpendicular component of the velocity. This results in a helical
path.

9.4 Velocity Selector

A velocity selector is a device that allows you to choose the velocity of particles.
This work by shooting a bunch of particles through the velocity selector, and
only the ones with the correct velocity make it through. The inside of a velocity
selector looks like the following:
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The particles has two forces acting on it, one magnetic force pointing upwards,
and one electric force pointing down. The magnetic force is dependant on veloc-
ity, and so if the particle moves too fast, then the magnetic force will be greater
than the electric and the particle will go to the roof. Similarly if the particle’s
speed is too low the particle will crash into the floor. There is a specific velocity
that need to be met for the following to be true:∣∣∣~FB∣∣∣ =

∣∣∣~FE∣∣∣
|q||~v|

∣∣∣ ~B∣∣∣ = |q|
∣∣∣ ~E∣∣∣

|~v| =

∣∣∣ ~E∣∣∣∣∣∣ ~B∣∣∣
9.5 Mass Spectrometer

A mass spectrometer is used to identify different isotopes of an element, or more
specifically the charge to mass ratio of the particle passed through it. The inside
of a mass spectrometer looks like:

This device combines the concept of a cyclotron radius and a velocity selector.
The particle is passed through a velocity selector, and then sent into a uniform
magnetic field. The radius of the particles motion can be measured and so the
following ratio can be evaluated:

r =
m|~v|

|q|
∣∣∣ ~B∣∣∣ =⇒ |q|

m
=
|~v|

r
∣∣∣ ~B∣∣∣

35



9.6 The Hall Effect

The Hall Effect occurs when a current is passed through a conductor, with a
magnetic field that runs perpendicular to the current.

The charges will be deflected due to the magnetic force, which will cause a
buildup of charge on one side of the conductor. This buildup of charge creates
a new induced field, call the Hall Electric Field.

The charges are no longer deflected when the edges become sufficiently charged,
such that there is a balance between the electric force and the magnetic force.

The equilibrium voltage across the conductor is called the Hall Voltage (∆VH).
The induced field inside the conductor is the strength that balanced the mag-
netic and electric forces, defined by:∣∣∣ ~EH ∣∣∣ = |~vd|

∣∣∣ ~B∣∣∣
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... and the voltage is expressed by:

|∆VH | = |~vd|
∣∣∣ ~B∣∣∣ d

... where d is the thickness of the conductor perpendicular to the current. If
you can measure d, ~B and the Hall Voltage, you can experimentally determine
the drift velocity. Note that when discussing conductors, L is the length along
which current is flowing, t is the length along which the magnetic field is applied,
and d is perpendicular to L and t. The Hall Voltage is related to the current
through the conductor by:

|∆VH | =
I
∣∣∣ ~B∣∣∣ d
nA|q|

=
I
∣∣∣ ~B∣∣∣
nt|q|

The Hall Voltage is useful for determining things like unknown magnetic fields,
density of charges

9.7 Force on a Current Carrying Wire

We know that force on a single charge from a magnetic field can be described
by:

~F = q(~vd × ~B)

... now we can multiply this by the total number of charges (N) which are in
the wire, written as:

N = nAL

So in general, the total force on a wire of length L and cross sectional area A is:

~FB = (qnA~vdL)× ~B

~FB = I~L× ~B

... where ~L is a vector with magnitude that is the length of the wire, and
direction of conventional current. For wires there is no need to flip your hands
for negative charges, as you point your fingers in the direction of the current
and then curl your fingers in the direction of the magnetic field. If the wire is
made up of multiple segments, or the magnetic field changes in certain parts of
the wire, then add the force vector on each segment.

The magnetic field acting on two current carrying wires is described by:∣∣∣ ~B∣∣∣ =
µ0I2
2πa

... where a is the distance between the wires and µ0 = 4π × 10−7 T ·m
A . The

magnitude of the force caused by the interaction of the two wires is:∣∣∣~F ∣∣∣ =
µ0I1I2`

2πa
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Questions sometimes as for force per length, and in that case you just divide
the formula by length of wire. This force is attractive if the currents are in the
same direction, and repulsive if they are in opposite directions.

10 Chapter 29: Sources of the Magnetic Field

10.1 The Biot-Savart Law

The Biot-Savart Law describes the magnetic field induced (d ~B) from a small
segment of wire (d~s). It is a law that is always true. The law described the

differential d ~B which can then be turned into ~B by:

~B =

∫
d ~B

The law is written with the following image in mind:

... and is written as:

d ~B =
µ0I

4π

d~s× r̂
|~r|2

~r is the vector which goes from the small segment of wire to the point of interest,
while d~s is the actual length of wire segment. I is the current through the wire
segment, and µ0 is the permeability of free space defined as:

µ0 = 4π × 10−7T ·m
A

The Biot-Savart Law has three important results which we will discuss now:
Given the following situation :
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The magnitude of the magnetic field at point O is:∣∣∣ ~B∣∣∣ =
µ0I

4πa
θ

... or when θ = 2π: ∣∣∣ ~B∣∣∣ =
µ0I

2a

Given the following situation (distance a from the center of a wire of length L):

The magnitude of the magnetic field at point P is:∣∣∣ ~B∣∣∣ =
µ0IL

2πa
√
L2 + 4a2

... or when L >> a: ∣∣∣ ~B∣∣∣ =
µ0I

2πa

Given the following situation (distance x from the center of a ring of current
with radius a):
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The magnitude of the magnetic field at point P is:

∣∣∣ ~B∣∣∣ =
µ0Ia

2

2(a2 + x2)3/2

Conclusion

This concludes the course content from PCS 125. I hope that these notes were
helpful, and that the final exam goes well for anyone reading! :)

- Adam Szava
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